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Abstract

Nipah virus (NiV) outbreaks have occurred in Malaysia, India, and Bangladesh, and the virus 

continues to cause annual outbreaks of fatal human encephalitis in Bangladesh due to spillover 

from its bat host reservoir. Due to its high pathogenicity, its potential use for bio/agro-terrorism, 

and to the current lack of approved therapeutics, NiV is designated as an overlap select agent 

requiring biosafety level-4 containment. Although the development of therapeutic monoclonal 

antibodies and soluble protein subunit vaccines have shown great promise, the paucity of effective 

antiviral drugs against NiV merits further exploration of compound libraries using rapid 

quantitative antiviral assays. As a proof-of-concept study, we evaluated the use of fluorescent and 

luminescent reporter NiVs for antiviral screening. We constructed and rescued NiVs expressing 

either Renilla luciferase or green fluorescent protein, and characterized their reporter signal 

kinetics in different cell types as well as in the presence of several inhibitors. The 50% effective 

concentrations (EC50s) derived for inhibitors against both reporter viruses are within range of 

EC50s derived from virus yield-based dose–response assays against wild-type NiV (within 

1Log10), thus demonstrating that both reporter NiVs can serve as robust antiviral screening tools. 

Utilizing these live NiV-based reporter assays requires modest instrumentation, and circumvents 

the time and labor-intensive steps associated with cytopathic effect or viral antigen-based assays. 

These reporter NiVs will not only facilitate antiviral screening, but also the study of host cell 

components that influence the virus life cycle.
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1. Introduction

Nipah virus (NiV) is a highly pathogenic paramyxovirus in the genus Henipavirus of the 

subfamily Paramyxovirinae within the family Paramyxoviridae (Rota and Lo, 2012). 

Humans are infected upon spillover of NiV from its bat reservoir host or by person-to-

person transmission (Luby, 2013). Due to its high pathogenicity, its potential use for bio/
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agro-terrorism, and to the current lack of approved therapeutics, NiV is designated as an 

overlap select agent requiring biosafety level-4 containment. Although several preventative 

measures against exposure to bat saliva or urine have been studied (Nahar et al., 2013), NiV 

continues to cause near-annual outbreaks of fatal encephalitis in Bangladesh. The 

development of therapeutic monoclonal antibodies and soluble subunit vaccines against 

henipaviruses have shown great promise (Broder et al., 2013), but screening available 

compound libraries for potentially efficacious therapeutics against NiV remains a high 

priority for investigation. Most high-throughput antiviral assays against NiV were developed 

to screen for inhibitors of virus entry and/or cell-to-cell fusion (Bossart et al., 2005; Porotto 

et al., 2009; Talekar et al., 2012; Tamin et al., 2009), while the NiV minigenome assay was 

used to screen for inhibitors of NiV replication (Freiberg et al., 2008). A chemiluminescent 

immunodetection assay for live henipavirus infection significantly streamlined antiviral 

screening when compared with cytopathic effect (CPE) or immune plaque-based assays, but 

had relatively limited signal-to-noise ratios (<100), and also required cell fixation and 

multiple incubation steps which are time and labor-intensive (Aljofan et al., 2008). Reverse 

genetic systems for henipaviruses have enabled the generation of recombinant viruses 

expressing fluorescent or luminescent proteins which allow for rapid detection of infection 

in vitro and in vivo (Lo et al., 2012; Marsh et al., 2013; Yoneda et al., 2006). We sought to 

determine whether NiVs expressing fluorescent or luminescent reporters could facilitate 

rapid quantitative antiviral screening. As a proof-of-concept study, we constructed and 

rescued NiVs expressing either Renilla luciferase (LUC2AM) or green fluorescent protein 

(GFP2AM), characterized their reporter signal kinetics in different human cell types, and 

tested them in parallel against cellular inhibitors of pyrimidine biosynthesis as well as innate 

immune agonists. We show that both reporter viruses can be used in the 96-well format and 

have excellent signal-to-noise ratios and Z′-factors. Furthermore, the 50% effective 

concentrations (EC50s) derived for inhibitors tested against both reporter viruses were not 

only within close range of one another (within 4-fold), but also of EC50s derived from virus 

yield-based dose–response assays against wild-type NiV (within 1 Log10), thus 

demonstrating that both reporter NiVs can serve as robust antiviral screening tools.

2. Materials and methods

2.1. Cells

Vero (African green monkey kidney), A549 (human lung epithelial carcinoma), HeLa 

(human cervical carcinoma), and HEK 293T (human embryonic kidney) cells were 

maintained at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium supplemented 

with 7.5% fetal bovine serum (FBS), 100 U/mL penicillin, 100 μg/mL streptomycin, and 2 

mM L-glutamine. Baby hamster kidney cells stably expressing T7 polymerase (BSRT7/5) 

(Buchholz et al., 1999) were incubated at every third passage in the presence of 1 mg/mL 

G-418 (Geneticin).

2.2. Cloning and rescue of recombinant viruses

For LUC2AM, a modified NiV M gene fragment expressing the Renilla luciferase 

(Promega) open reading frame (ORF) in-frame with the NiV Matrix (M) gene ORF 

separated by the FMDV 2A protease cleavage peptide was constructed using a 4-step 
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overlapping PCR strategy as described for a DsRed-Express reporter NiV (RED2AM) and 

inserted into a plasmid containing a full-length cDNA copy of wild-type recombinant NiV 

genome using engineered SbfI and SacII restriction sites (Lo et al., 2012). The total genome 

length of LUC2AM was 19,254 nt.

The GFP2AM expressing the green fluorescence protein Zsgreen1 (Clontech) ORF in-frame 

with the NiV M gene ORF separated by the porcine teschovirus 2A (p2A) protease cleavage 

peptide was constructed using a second-generation wild-type recombinant NiV (rNiV) 

(Genbank sequence AF212302) devoid of engineered restriction sites, assembled via 4 

fragments into the same plasmid backbone used for LUC2AM (Genscript). A synthesized 

fragment containing the GFP, p2A, and NiV M coding sequence in-frame was cloned into 

WT using PacI restriction sites. An additional 3 nucleotides “GGA” encoding the amino 

acid glycine were inserted between the end of the Zsgreen1 ORF and the start of the p2A 

cleavage peptide for the final genome length to obey the “Rule of six” at 19,014 nt 

(Kolakofsky et al., 1998). Both LUC2AM and GFP2AM were rescued as previously 

described (Lo et al., 2012). The genomes of the rescued viruses were fully sequenced with 

no undesired mutations. Virus stock titers were determined by median tissue culture 

infectious dose (TCID50) assay (see below).

2.3. Infections with recombinant reporter viruses, reporter activity measurements, cell type 
optimization, TCID50

All infections in this study were performed in 96-well plates. Cells were seeded in opaque 

black or white plates (Costar 3916, 3917) for fluorescence and luminescence-based assays 

respectively. Initial time course experiments for rescued viruses were performed by infecting 

2 × 104 Vero cells/well at multiplicity of infection (MOI) = 0.01 TCID50/cell of either virus 

for 2 h. Virus inoculum was removed and replaced with 100 μL Fluorobrite medium (Life 

Technologies) supplemented with 2 mM L-glutamine and 10% FBS. At 24, 48, and 72 h 

post-infection (hpi), supernatants were harvested for TCID50 determination and replaced 

with Fluorobrite medium. Fluorescence activity (gain = 65) was measured in a H1 Synergy 

plate reader (Biotek), while luminescence activity (gain = 107) was measured in the same 

reader 10 min after addition of Renilla-Glo substrate (Promega). Subsequent infections were 

performed at MOI = 0.2 TCID50/cell unless stated otherwise. Cytopathic effect-based 

TCID50 assays were performed by infecting Vero cells in 10-fold dilution series of samples 

(10− 1–10−8) in a 96- well plate format, infecting 9 wells per sample and dilution step. Plates 

were read after 7 days to ensure a clear distinction between infected and uninfected wells at 

the highest dilutions.

2.4. Fluorescence microscopy

2 × 104 HeLa cells were infected with LUC2AM or GFP2AM, and at 24 hpi were fixed in 

10% formalin for 15 min, permeablized with PBS + 0.4% Triton-X for 5 min, washed with 

PBS + 0.1% Tween (PBS-T), and blocked with PBS-T + 5% milk (PBS-T-M) for 30 min. 

LUC2AM-infected cells were incubated with a mouse anti-NiV-N monoclonal antibody 

1A11C1 (Chiang et al., 2010) and a rabbit anti-Renilla luciferase antibody (MBL) diluted 

1:1000 and 1:200 respectively in PBS-T-M for 1 h at 37 °C, while GFP2AM-infected cells 

were incubated with only 1A11C1 antibody. After 3 washes with PBS-T, cells were 
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incubated with anti-mouse DyLight 550 and anti-rabbit DyLight 488 antibodies (Bethyl 

Laboratories, Inc.) diluted 1:1000 in PBS-T-M for 30 min at 37 °C. After 3 washes, 

fluorescence images were taken on a Zeiss Axiovert 200 microscope at 40X magnification.

2.5. Antiviral compounds, assessment of cell viability (CC50) and 50% effective 
concentrations (EC50)

The following compounds used in this study were dissolved in dimethyl sulfoxide (DMSO): 

6-azauridine acetate (Sigma), Pyrazofurin (TRC), and compound 09167 (Vitas-M 

Laboratory) (Yan et al., 2013). The final DMSO concentration in Fluorobrite media was 

0.1%. Universal interferon (U-IFN) (Sigma) was dissolved in sterile distilled H2O. The 

CellTiter-Glo assay (Promega) was used to determine viability of uninfected 293T cells 

exposed to 3-fold serial dilutions of the compounds for 48 h. Values were normalized to 

DMSO controls according to % viability as follows: % viability = [(specific value–reference 

value)/(DMSO control value − reference value)] × 100. Reference values were derived from 

control wells without cells. DMSO control values (after subtraction of reference values) 

were set at 100% viability. 50% viability/cytotoxicity (CC50) and 50% effective 

concentrations (EC50) were calculated using four-parameter variable slope non-linear 

regression fitting of mean values for three experiments. Therapeutic indices (TI) were 

represented as CC50/EC50. In instances which CC50 could not be properly calculated due to 

non-convergence of dose response curves, we designated the highest concentration of 

compound used as the CC50.

2.6. Statistical analysis

Statistical analysis was performed using Prism 6 software (GraphPad Software). Z′ 
(separation band/dynamic range of the assay) values were calculated based on the following 

formula: Z′ = 1 − [(3SDC + 3SDB)/(meanC − meanB)], where SD is the standard deviation, 

C is the control, and B is the background (Zhang et al., 1999). The percent coefficient of 

variation (%CV) was calculated as follows: %CV = SDC/meanC × 100.

3. Results and discussion

3.1. Construction and characterization of luciferase and GFP expressing NiVs

To evaluate the use of luminescent reporters for antiviral screening against NiV, we 

constructed a Renilla luciferase-expressing NiV (LUC2AM) by employing previous 

methods used to generate a red fluorescent protein-expressing NiV (RED2AM) (Lo et al., 

2012). We inserted the Renilla luciferase (LUC) gene into the NiV matrix (M) gene 5′ of 

the MORF in the same reading frame, separated by the coding sequence of the Foot and 

Mouth Disease virus protease cleavage peptide (F2A) (Fig. 1A). We used the same strategy 

to construct a second generation recombinant green fluorescent protein(GFP)-expressing 

NiV (GFP2AM), except that we used the more efficiently-cleaved porcine Teschovirus 2A 

cleavage peptide (p2A) coding sequence instead of F2A (Kim et al., 2011) (see Section 2). 

We rescued both LUC2AM and GFP2AM and confirmed expression of their respective 

reporter proteins by immunofluorescence microscopy. The distribution of both LUC and 

GFP were distinct from NiV nucleoprotein, with the luciferase localizing exclusively to the 

cytoplasm, and with the GFP occupying both nuclear and cytoplasmic compartments (Fig. 
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1B). While GFP2AM grew similarly in Vero cells (MOI = 0.01 TCID50/cell) compared with 

the non-reporter recombinant (rNiV) (Fig. 1C, right) LUC2AM had an attenuated growth 

phenotype when compared with its corresponding first generation non-reporter recombinant 

NiV (WT) (Fig. 1C, left). This is consistent with previous observations that the RED2AM 

virus was moderately attenuated compared with WT (Lo et al., 2012). Furthermore our 

result is consistent with previous work showing that NiV M requires ubiquitination inside 

the nucleus to become functional for budding (Wang et al., 2010), since the comparatively 

less-efficient cleavage of F2A would result in decreased amounts of functional NiV M for 

budding new virus particles. In spite of this phenotype however, LUC2AM generated 

increasing levels of LUC activity from 0 to 48 h postinfection (hpi), and reached viral titers 

of over 106 TCID50/mL by 72 hpi (Fig. 1C, left panel). The fluorescence signal generated by 

GFP2AM was detectable at 24 hpi, but increased by greater than 20-fold at 48 hpi, and 

continued to increase through 72 hpi. The accumulation of GFP signal over the course of 

infection corresponded with the increase in GFP2AM viral titer (Fig. 1C, right panel).

3.2. Optimization of cell type and infection conditions for LUC2AM and GFP2AM-based 
assays

We then optimized both assays for antiviral testing. We tested each virus against 3 common 

human cell lines (A549, HeLa, 293T) alongside Vero cells to determine which would yield 

the strongest reporter signal over the course of infection. For negative controls, we assayed 

for reporter activity in each cell line infected with wild-type recombinant NiV (rNiV). 

Infection with LUC2AM over the course of 72 h (MOI = 0.1 TCID50/cell) showed that HeLa 

and 293T cells supported peak LUC activity to approximately equal or greater levels than in 

Vero cells, while A549 only marginally supported LUC activity (Fig. 2A, left panel). In both 

Vero and HeLa cells, LUC signal peaked at 24 hpi (~4–5 × 104 relative light units) and 

steadily decreased by over 10-fold by 72 hpi. In 293T cells however, the LUC signal was 

approximately equal to those of Vero and HeLa cells at 24 hpi, but proceeded to double by 

48 hpi (~8 × 104 RLU) before decreasing at 72 hpi to levels similar to 24 hpi. Infection with 

GFP2AM yielded similar results, showing minimal NiV replication in A549 cells, and 

indicating 293T cells as the optimal cell type which generated the highest GFP signal 

onward from 48 hpi to 72 hpi (Fig. 2A right panel). In contrast to the LUC2AM infections 

however, all 4 infected cell lines attained their highest levels of GFP expression at 72 hpi. 

The different reporter signal kinetics observed when comparing LUC2AM and GFP2AM 

infections are likely a function of respective reporter protein maturation rates and half-lives. 

Whereas LUC matures rapidly and has a protein half-life of approximately 14 h in the cell 

cytoplasm (Loening et al., 2006), GFP requires 8–12 h for maturation, and has a protein 

half-life of approximately 26 h (Corish and Tyler-Smith, 1999). Since the peak LUC signal 

in infected 293T cells occurred at 48 hpi, and because of the minimal difference in GFP 

signal between 48 hpi and 72 hpi, we chose 48 hpi as our assay time point for both 

LUC2AM and GFP2AM.

To further optimize these reporter assays, we infected 293T cells with either reporter virus at 

MOIs ranging from 0.05 to 0.4 TCID50/cell. Increasing the MOI for both LUC2AM and 

GFP2AM led to corresponding increases in reporter activity (Fig. 2B). Since the increase in 

MOI from 0.2 to 0.4 for both LUC2AM and GFP2AM only marginally increased their 
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respective reporter activity (less than 2-fold), we used MOI = 0.2 TCID50/cell for both 

reporter viruses for our antiviral assays. We performed growth curves for both viruses in 

293T cells by infecting at MOI = 0.2 TCID50/cell, and observed increases in reporter signals 

corresponding with increases in virus titers (Fig. 2C).

3.3. Testing antiviral inhibitors against LUC2AM and GFP2AM

Having optimized both fluorescent and luminescent reporter assays in 293T cells, we 

assayed LUC2AM and GFP2AM against two known inhibitors of NiV, 6-azauridine acetate 

and pyrazofurin. Both of these compounds inhibit cellular pyrimidine biosynthesis via 

blocking orotidine 5′-monophosphate decarboxylase (Bono et al., 1964; Georges-Courbot et 

al., 2006; Gutowski et al., 1975). Consistent with a prior study utilizing a CPE-based assay 

(Georges-Courbot et al., 2006), 6-azauridine acetate and pyrazofurin showed dose-

dependent inhibition of LUC2AM and GFP2AM, reducing reporter activity to background 

levels at the highest doses (25–50 μM) while having mild to minimal effects on cell viability 

(Fig. 3A). The respective 50% effective concentrations (EC50) determined for each 

compound using the LUC2AM and GFP2AM were within 3-fold of each other (Table 1).

Since several studies have demonstrated the sensitivity of henipaviruses to type-1 interferon 

(IFN) signaling (Dhondt et al., 2013; Escaffre et al., 2013; Virtue et al., 2011), we evaluated 

the antiviral effect of universal interferon (U-IFN) against our reporter viruses. Although 

increasing concentrations of U-IFN led to corresponding decreases in respective reporter 

activity, even the highest concentration (1000 IU) of U-IFN only reduced LUC and GFP 

activity by approximately 4-fold and 3-fold respectively (Fig. 3B, top panels). These results 

are consistent with the early expression of multiple antagonists of IFN signaling by NiV 

(Kulkarni et al., 2009; Rodriguez et al., 2002; Shaw et al., 2005). EC50 values for U-IFN 

against LUC2AM and GFP2AM were nearly identical (Table 1). In addition to U-IFN we 

also tested compound 09167, a recently characterized agonist of the innate antiviral response 

(Yan et al., 2013) (Fig. 3B, lower panels). In contrast to U-IFN, treatment with compound 

09167 was able to completely ablate both LUC and GFP activity at the highest dose tested 

(12.5 μM), indicating that IFN signaling-independent components have crucial roles in 

blocking NiV replication. Dose response curves for compound 09167 against both 

LUC2AM and GFP2AM confirmed sub-micro molar EC50s, which were consistent with 

EC50s previously obtained for 09167 against other paramyxoviruses (Yan et al., 2013) (Table 

1). Further studies of this compound’s effect on cell viability are warranted to determine its 

suitability for antiviral testing in vivo.

3.4. Counter screening against wild-type NiV, evaluating reporter assays for high-
throughput screening

To confirm whether the dose–response curves and EC50 values obtained using these reporter 

viruses reflected actual inhibition of NiV replication, we tested 6-azauridine acetate and 

compound 09167 against wild-type non-recombinant NiV via virus yield-based dose–

response assays (Fig. 4A). We observed dose-dependent reductions in virus titers to below 

initial levels of input virus at the two highest doses for each compound (>4 Log10 

TCID50/mL reduction), suggesting complete ablation of viral replication at these 

concentrations. EC50 values calculated for 6-azauridine and 09167 against wild-type NiV 
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were within 1 Log10 of EC50 values derived for each compound against LUC2AM and 

GFP2AM, indicating that inhibition of the reporter viruses paralleled inhibition of NiV 

replication (Fig. 4B, Table 1). The moderately higher EC50s calculated from the reporter 

viruses suggest a lesser likelihood to detect false positives in the context of high-throughput 

screening (HTS). To quantitatively assess the suitability of these two viruses for HTS, we 

used compound 09167 as a positive control for inhibition and calculated Z′ factor values, 

signal-to-noise ratios, and coefficients of variation for the 96-well plate format used 

throughout this study. For both assays, these values were robust and well within the 

acceptable range for HTS (Zhang et al., 1999) (Table 2).

4. Conclusions

The primary advantages to using viral reporter assays over viral antigen-based assays are the 

significant reduction in assay turnaround time and the minimal reagents required. Whereas a 

previously described henipavirus immunodetection assay required at least 2 h of post-

infection processing (fixing, blocking, antibody staining) before the plate reading step, the 

LUC2AM assay required just 10 min of reagent incubation before plate reading, while the 

GFP2AM assay required even less time since no additional reagents were required. The 

LUC2AM assay has several advantages over the GFP2AM assay including better signal-to-

noise ratios and less variability between samples/wells. Although we established the 

LUC2AM assay to be read alongside the GFP2AM assay at 48 hpi, the robust signal-to-

noise ratio and Z′ values for LUC2AM at even 24 hpi would allow for adaptation of the 

assay to span a shorter infection period, whereas this would not be possible for GFP2AM 

due to its longer maturation time (data not shown). The GFP2AM assay has some 

advantages over LUC2AM assay in that GFP activity can be measured multiple times, 

whereas LUC measurement is an endpoint measurement. Furthermore, GFP2AM can be 

easily adapted for high content imaging to simultaneously assess cell viability and reporter 

activity, as well as for flow-cytometry-based applications. In sum, we established reporter 

NiVs that will not only facilitate antiviral screening, but also the study of cellular 

components that influence viral replication.
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Fig. 1. 
Design and characterization of reporter Nipah (NiV) viruses. (A) Schematic of wild-type 

NiV genome alongside reporter NiVs expressing either luciferase (LUC2AM) or green-

fluorescent protein (GFP2AM) respective nucleotide (nt) lengths indicated. Black segments 

represent non-coding regions, while white segments indicate open reading frames. Modified 

M gene coding regions for LUC2AM and GFP2AM are highlighted in yellow and green 

respectively. (B) Microscopic examination of HeLa cells infected with LUC2AM and 

GFP2AM. LUC2AM-infected were stained with antibodies against NiV nucleoprotein (N) 

and anti-Renilla luciferase antibodies, while GFP2AM-infected cells were stained only with 

N antibodies. (C) Time course analysis of growth kinetics and reporter activities of 

LUC2AM and GFP2AM alongside the growth kinetics of their corresponding wild-type 

recombinant NiVs (WT, rNiV respectively). Vero cells were infected with each virus at an 

MOI of 0.01. At 1, 2, and 3 days post-infection, supernatants titers were determined by 

TCID50, (left Y-axis) while relative light units (RLU) or relative fluorescence units (RFU) in 

the cells infected with reporter viruses were measured (right Y-axis). Reporter activity levels 
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at day 0 post-infection indicate background noise of the luminometer/fluorometer. Values 

represent means and standard deviations for 3 experiments.
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Fig. 2. 
Assay optimization. (A) 293T cells yielded the highest reporter activity levels for both 

LUC2AM and GFP2AM reporter viruses. (B) 293T cells were infected at the indicated 

multiplicity of infection (MOI) with LUC2AM or GFP2AM, and respective reporter values 

were measured at 48 hpi. (C) Time course analysis of growth kinetics and reporter activities 

of LUC2AM and GFP2AM in 293T cells (MOI = 0.2 TCID50/cell). At 1, 2, and 3 days post-

infection, supernatant titers were determined by TCID50 (left Y-axis), while respective 

reporter activities in the cells were measured (right Y-axis). Values represent means and 

standard deviations for 3 experiments.
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Fig. 3. 
Reporter NiVs as tools for antiviral testing. (A) Testing of 2 known inhibitors (6-azauridine 

acetate and pyrazofurin) of pyrimidine biosynthesis and (B) 2 innate immune agonists 

(Universal interferon and compound 09167) against LUC2AM (left panels) and GFP2AM 

(right panels). 293T cells were infected with reporter NiVs (MOI = 0.2 TCID50/cell) for 2 h, 

and then incubated with indicated compounds in 3-fold serial dilutions. Each concentration 

was assessed in three replicates. Reporter virus activity was measured on the left Y-axis; % 

cell viability was measured on the right Y-axis. Values represent means and standard 

deviations of 3 experiments.
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Fig. 4. 
Confirmatory counter-screening against wild-type NiV. (A) Virus titer-reduction assays. 

293T cells were infected with wild-type NiV (MOI = 0.2 TCID50/cell) for 2 h, and then 

incubated with 3-fold dilutions of 6-azauridine acetate (left panel) or compound 09167 (right 

panel) for 48 h. Supernatant virus titers were determined by TCID50 titrations and plotted 

against compound concentration. Values represent means and standard deviations of 3 

experiments. Virus titers were then (B) normalized to vehicle (DMSO) controls. EC50s were 

calculated based on four-parameter variable-slope nonlinear regression models. Normalized 

data points represent means for three experiments.
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Table 1

50% effective concentrations (EC50) of compounds against reporter and wild-type NiVs (therapeutic indices in 

parentheses).

Inhibitor ID Units NiV-LUC2AM NiV-GFP2AM NiV-MY-99

6-Azauridine acetate μM 0.274 ± 0.0357 (⩾364) 0.553 ± 0.151 (⩾180) 0.120 ± 0.0445 (⩾833)

Pyrazofurin μM 0.432 ± 0.0871 (⩾115) 0.281 ± 0.0448 (⩾177) ND

09167 μM 0.0723 ± 0.0123 (877) 0.254 ± 0.0905 (249) 0.0289 ± 0.0102 (2196)

U-IFN IU 10.96 ± 4.90 (⩾91) 10.2 ± 8.49 (⩾98) ND

ND - Not done.
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Table 2

Comparison of Nipah LUC2AM and GFP2AM assays used in this study.

Plate format Target virusa Z′valueb S/N ratioc %CV

96 wells NiV-LUC2AM 0.85 1.33E + 04 5%

96 wells NiV-GFP2AM 0.67 2.16E + 03 11%

a
293T cells were infected with either LUC2AM or GFP2AM viruses for 2 h before treatment with host antiviral agonist compound 09167 (final 

concentration, 12.5 mM) or an equivalent amount of vehicle (DMSO). Relative luciferase/fluorescence units were determined at 48 hpi.

b
Z′ factor (Zhang et al., 1999). Statistical analyses were based on means of four independent experiments.

c
Ratio of signal to background noise.
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